37 research outputs found

    Day-Ahead Crude Oil Price Forecasting Using a Novel Morphological Component Analysis Based Model

    Get PDF
    As a typical nonlinear and dynamic system, the crude oil price movement is difficult to predict and its accurate forecasting remains the subject of intense research activity. Recent empirical evidence suggests that the multiscale data characteristics in the price movement are another important stylized fact. The incorporation of mixture of data characteristics in the time scale domain during the modelling process can lead to significant performance improvement. This paper proposes a novel morphological component analysis based hybrid methodology for modeling the multiscale heterogeneous characteristics of the price movement in the crude oil markets. Empirical studies in two representative benchmark crude oil markets reveal the existence of multiscale heterogeneous microdata structure. The significant performance improvement of the proposed algorithm incorporating the heterogeneous data characteristics, against benchmark random walk, ARMA, and SVR models, is also attributed to the innovative methodology proposed to incorporate this important stylized fact during the modelling process. Meanwhile, work in this paper offers additional insights into the heterogeneous market microstructure with economic viable interpretations

    Exchange Rate Forecasting Using Entropy Optimized Multivariate Wavelet Denoising Model

    Get PDF
    Exchange rate is one of the key variables in the international economics and international trade. Its movement constitutes one of the most important dynamic systems, characterized by nonlinear behaviors. It becomes more volatile and sensitive to increasingly diversified influencing factors with higher level of deregulation and global integration worldwide. Facing the increasingly diversified and more integrated market environment, the forecasting model in the exchange markets needs to address the individual and interdependent heterogeneity. In this paper, we propose the heterogeneous market hypothesis- (HMH-) based exchange rate modeling methodology to model the micromarket structure. Then we further propose the entropy optimized wavelet-based forecasting algorithm under the proposed methodology to forecast the exchange rate movement. The multivariate wavelet denoising algorithm is used to separate and extract the underlying data components with distinct features, which are modeled with multivariate time series models of different specifications and parameters. The maximum entropy is introduced to select the best basis and model parameters to construct the most effective forecasting algorithm. Empirical studies in both Chinese and European markets have been conducted to confirm the significant performance improvement when the proposed model is tested against the benchmark models

    Forecasting Crude Oil Price with Multiscale Denoising Ensemble Model

    Get PDF
    Crude oil price becomes more volatile and sensitive to increasingly diversified influencing factors with higher level of deregulations worldwide. Current methodologies are being challenged as they have been constrained by traditional approaches assuming homogeneous time horizons and investment strategies. Approximations they provided over the long term time horizon no longer satisfy the accuracy requirement at shorter term and more microlevels. This paper proposes a novel crude oil price forecasting model based on the wavelet denoising ARMA models ensemble by least square support vector regression with the reduced forecasting matrix dimensions by independent component analysis. The proposed methodology combines the multi resolution analysis and nonlinear ensemble framework. The wavelet denoising based algorithm is introduced to separate and extract the underlying data components with distinct features, corresponding to investors with different investment scales, which are modeled with time series models of different specifications and parameters. Then least square support vector regression is introduced to nonlinearly ensemble results based on different wavelet families to further reduce the estimation biases and improve the forecasting generalizability. Empirical studies show the significant performance improvement when the proposed model is tested against the bench-mark models

    Dependences and volatility spillovers between the oil and stock markets: New evidence from the copula and VAR-BEKK-GARCH models

    Get PDF
    This paper examines the dynamic relationship between the oil market and stock markets from two perspectives: dependence between the crude oil market (WTI) and stock markets of the US and China, and volatility spillovers between them during 1991-2016. We further analyze structural breaks of market dependences and consider the extent of their influence on such relationships. Our vine-copula results show that the dependences between the three paired markets, WTI-US, WTI-China and US-China, vary dynamically across the six identified structural break periods. In particular, the dependence between WTI-US is stronger and more volatile than that between WTI-China during most of the periods. The dependence between US-China remains at a lower level in the earlier periods, but increases in the final period. Our VAR-BEKK-GARCH results demonstrate distinctive volatility spillovers across these periods, with varying directionality, in response to the structural changes. Overall, our results indicate that the oil market stimulates rapid and continual fluctuations in market dependences, which become manifest most acutely in the aftermath of the Financial Crisis of 2007-08, demonstrating the increasing interdependence between the oil and stock markets. Further, the growing influence of China on the dynamics of these relationships, in the period following the Great Recession, presents evidence that it begins to assume an increasingly important role in global economic recovery

    A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting

    Get PDF
    In this study, a novel multiscale nonlinear ensemble leaning paradigm incorporating empirical mode decomposition (EMD) and least square support vector machine (LSSVM) with kernel function prototype is proposed for carbon price forecasting. The EMD algorithm is used to decompose the carbon price into simple intrinsic mode functions (IMFs) and one residue, which are identified as the components of high frequency, low frequency and trend by using the Lempel-Ziv complexity algorithm. The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model is used to forecast the high frequency IMFs with ARCH effects. The LSSVM model with kernel function prototype is employed to forecast the high frequency IMFs without ARCH effects, the low frequency and trend components. The forecasting values of all the components are aggregated into the ones of original carbon price by the LSSVM with kernel function prototype-based nonlinear ensemble approach. Furthermore, particle swarm optimization is used for model selections of the LSSVM with kernel function prototype. Taking the popular prediction methods as benchmarks, the empirical analysis demonstrates that the proposed model can achieve higher level and directional predictions and higher robustness. The findings show that the proposed model seems an advanced approach for predicting the high nonstationary, nonlinear and irregular carbon price

    Forecasting Energy Value at Risk Using Multiscale Dependence Based Methodology

    No full text
    In this paper, we propose a multiscale dependence-based methodology to analyze the dependence structure and to estimate the downside portfolio risk measures in the energy markets. More specifically, under this methodology, we formulate a new bivariate Empirical Mode Decomposition (EMD) copula based approach to analyze and model the multiscale dependence structure in the energy markets. The proposed model constructs the Copula-based dependence structure formulation in the Bivariate Empirical Mode Decomposition (BEMD)-based multiscale domain. Results from the empirical studies using the typical Australian electricity daily prices show that there exists a multiscale dependence structure between different regional markets across different scales. The proposed model taking into account the multiscale dependence structure demonstrates statistically significantly-improved performance in terms of accuracy and reliability measures

    Multivariate EMD-Based Modeling and Forecasting of Crude Oil Price

    No full text
    Recent empirical studies reveal evidence of the co-existence of heterogeneous data characteristics distinguishable by time scale in the movement crude oil prices. In this paper we propose a new multivariate Empirical Mode Decomposition (EMD)-based model to take advantage of these heterogeneous characteristics of the price movement and model them in the crude oil markets. Empirical studies in benchmark crude oil markets confirm that more diverse heterogeneous data characteristics can be revealed and modeled in the projected time delayed domain. The proposed model demonstrates the superior performance compared to the benchmark models

    Portfolio Value at Risk Estimate for Crude Oil Markets: A Multivariate Wavelet Denoising Approach

    No full text
    In the increasingly globalized economy these days, the major crude oil markets worldwide are seeing higher level of integration, which results in higher level of dependency and transmission of risks among different markets. Thus the risk of the typical multi-asset crude oil portfolio is influenced by dynamic correlation among different assets, which has both normal and transient behaviors. This paper proposes a novel multivariate wavelet denoising based approach for estimating Portfolio Value at Risk (PVaR). The multivariate wavelet analysis is introduced to analyze the multi-scale behaviors of the correlation among different markets and the portfolio volatility behavior in the higher dimensional time scale domain. The heterogeneous data and noise behavior are addressed in the proposed multi-scale denoising based PVaR estimation algorithm, which also incorporatesthe mainstream time series to address other well known data features such as autocorrelation and volatility clustering. Empirical studies suggest that the proposed algorithm outperforms the benchmark ExponentialWeighted Moving Average (EWMA) and DCC-GARCH model, in terms of conventional performance evaluation criteria for the model reliability

    Forecasting Electricity Market Risk Using Empirical Mode Decomposition (EMD)—Based Multiscale Methodology

    No full text
    The electricity market has experienced an increasing level of deregulation and reform over the years. There is an increasing level of electricity price fluctuation, uncertainty, and risk exposure in the marketplace. Traditional risk measurement models based on the homogeneous and efficient market assumption no longer suffice, facing the increasing level of accuracy and reliability requirements. In this paper, we propose a new Empirical Mode Decomposition (EMD)-based Value at Risk (VaR) model to estimate the downside risk measure in the electricity market. The proposed model investigates and models the inherent multiscale market risk structure. The EMD model is introduced to decompose the electricity time series into several Intrinsic Mode Functions (IMF) with distinct multiscale characteristics. The Exponential Weighted Moving Average (EWMA) model is used to model the individual risk factors across different scales. Experimental results using different models in the Australian electricity markets show that EMD-EWMA models based on Student’s t distribution achieves the best performance, and outperforms the benchmark EWMA model significantly in terms of model reliability and predictive accuracy

    Forecasting Crude Oil Risk Using a Multivariate Multiscale Convolutional Neural Network Model

    No full text
    In light of the increasing level of correlation and dependence between the crude oil markets and the external influencing factors in the related financial markets, we propose a new multivariate empirical decomposition convolutional neural network model to incorporate the external influence of financial markets such as stock market and exchange market in a multiscale setting into the modeling of crude oil market risk movement. We propose a multivariate empirical model decomposition to analyze the finer details of interdependence among risk movement of different markets across different time horizons or scales. We also introduce the convolutional neural network to construct a new nonlinear ensemble algorithm to reduce the estimation bias and improve the forecasting accuracy. We used the major crude oil price data, stock market index, and the euro/United States dollar exchange rate data to evaluate the performance of the multivariate empirical model decomposition convolutional neural network model. The combination of both the multivariate empirical model decomposition and the convolutional neural network model in this paper has produced the risk forecasts with significantly improved risk forecasting accuracy
    corecore